
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1789
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

I. INTRODUCTION

Cloud computing has emerged as a very popular computing
paradigm offering on demand resource allocation and usage,
lower costs, distributed storage and backup, and a usage
based pricing model [1], [2]. Cloud computing is an evolution
of various forms of distributed computing systems: from
original distributed computing, parallel computing (cluster,
to service-oriented computing (e.g., grid). Cloud computing
extends these various distributed computing forms by
introducing a business model, in which the nature of on-
demand, self service and pay-by-use of resources is used.
Cloud computing sells itself as a cost-effective solution and
reliable platform. It focuses on delivery of services
guaranteed through Service Level Agreements. The services
can be application software—SaaS, development
environments for developing applications—PaaS, and raw
infrastructures and associated middleware —IaaS.

MapReduce is an attractive model for opportunistic computer
resources and offers an ease-of-use programming paradigm
for processing large data sets. MapReduce is an emerging
programming model that simplifies parallel data processing
[15]. Due to the feature of easy programming, the fault
tolerance support, and the assumption of commodity
hardware, MapReduce has been recognized as a compelling
programming paradigm for non dedicated distributed
computing environment to expand the scope of supported
applications.

Cloud technologies such as Google MapReduce, Hadoop and
Hadoop Distributed File System (HDFS), CGL-MapReduce

,Google File System (GFS), Microsoft Dryad obtain parallel
runtimes by using a more data-centered. In these cloud
frameworks, the data is staged in data/compute

nodes of clusters or large-scale data centers , as done in
Google. To perform data processing the computations move
to the data. GFS and HDFS which are distributed file systems
allow Google MapReduce and Hadoop to access data via
distributed storage systems built on heterogeneous compute
nodes, while CGL-MapReduce and Dryad support reading
data from local disks. The programming model is simple
which enables better support for quality of services such as
monitoring and fault tolerance.

Cloud computing is at the peak of the Gartner technology
hype .There are several reasons why clouds should be
 important for large scale scientific computing

1) Clouds provide the large scale computer centers

which is important to large scale science problems as
well as those at small scale.

2) Clouds are cost effective approach to computing.
Their architecture addresses the important fault
tolerance issue explicitly.

3) Clouds are commercially supported and provide
reasonably robust software without the sustainability
difficulties seen from the academic software systems
critical to much current Cyber infrastructure.

4) There are 3 major vendors of clouds (Google,
Amazon, and Microsoft) and many other
infrastructure and software cloud technology
vendors including Eucalyptus Systems. This
competition should ensure that clouds should
develop in a healthy innovative fashion and
following cloud standards [3]

5) There are many Cloud research, conferences and
other activities with research cloud infrastructure
efforts including OpenNebula[5],
Eucalyptus[7],Nimbus[4], Sector/Sphere[6] and.

Parallel computing on cloud for massively intensive
applications using mapreduce

A.Sree Lakshmi

Abstract— Recent advancements in data intensive computing for science discovery are fueling a dramatic growth in use of
data-intensive iterative computations. Performance is an open issue in data intensive applications. To process large-scale
datasets with high performance more resources and reliable infrastructures are required for spreading the data and running the
applications across multiple machines in parallel Cloud computing basic platform can propose different requirements for storage
and Computation in face of different users during its operation. Cloud computing has become the cost-effective solution for the
increased demand for computing resources and services ,distributed data, by removing the the cost of building , operating and
maintaining expensive physical resources and infrastructures . MapReduce is a programming model for parallel data processing
widely used in Cloud computing environment. This paper discusses about MapReduce which is a cloud computing support to
execute massively intensive applications parallel.

 Index Terms— Parallel Comuting, cloud computing, Map reduce, Hadoop, data intensive computing,

—————————— ——————————

A.Sree Lakshmi, Associate Professor , Geethanjali College of
Engineering and Technology, Hyderabad.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1790
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

6) Clouds offer "on-demand" and interactive computing
that is more attractive than batch systems to many
users.

II. OVERVIEW OF PARALLEL APPROACH

Parallel computing is a type of computational in which many
programs are transferred instantly following the procedure
that the huge problems are further divided in to smaller one
and being solved concurrently. It is well known that the
speedup of an application to solve large computational
problems is mainly gained by the
Parallelization at either hardware or software levels or both.
Software parallelism at component and system levels can be
classified into two types: automatic parallelization of
applications without modifying existing sequential
applications and construction of parallel programming
models using various software technologies to describe
parallel algorithms and then match applications with the
underlying hardware platforms. Since the nature of auto-
parallelization is to recompile a sequential program without
the need for modification, it has a limited capability of
parallelization on the sequential algorithm itself. Mostly, it is
hard to directly transform a sequential algorithm into parallel
ones. While parallel programming models try to address how
to develop parallel applications and therefore can maximally
utilize the parallelization to obtain high performance, it does
need more development effort on parallelization of specific
applications.

In general, three considerations when parallelizing an
application include:
• How to distribute workloads or decompose an

algorithm into parts as tasks?
• How to map the tasks onto various computing nodes

and execute the subtasks in parallel?
• How to communicate and coordinate subtasks on

those computing nodes.
There are mainly two common methods for dealing with the
first two questions: data parallelism and task parallelism.
Data parallelism represents workloads are distributed into
different computing nodes and the same task can be executed
on different subsets of the data simultaneously.
Task parallelism means the tasks are independent and can be
executed purely in parallel. There is another special kind of
the task parallelism is called ‘pipelining’.
 A task is processed at different stages of a pipeline, which is
especially suitable for the case when the same task is used
repeatedly. The extent of parallelization is determined by
dependencies of each individual part of the algorithms and
tasks.

For one computational process, loop structure is the one that
appears most frequent in program design and also occupies
system computation resource mainly. Frequently, during the
running of a program, most of the time is spent on executing
loop program. The increase of the layer number of loop and
nest makes the time for computing in exponential rise, which
becomes the main computing bottleneck during the running
of a program. Therefore, doing research on the problem of
parallelism of loop program is one most import aspect for us
to do the job about the parallelism of program.

Loop Structure 1:
for (i=0;i<1000;i++)
{
…;
}

Loop Structure 2:
for (i=0; i<1000;i++)
for (j=0; j<1000; j++)
for (k=0;k<1000; k++)
{
…;
}
Because the two loops above differ by two layers of nests
their execution time differ from each other about one million
times. Hence, when doing tasks partition, to process loop
structure is important in the process of parallelism. The
correlation between data has very important impact on
parallelism.

When we do research on the parallelism of loop program we
must analyze the dependency between computational
data[17] [18] and thus discuss the method of data partition
when executing computation. As long as there is dependency
between data, we have to pay more attention in the process of
the parallelism of program. Analyzing the dependency
between statements in a computing program is called
dependency analysis.

III. MAP REDUCE MODEL

MapReduce[21] is a system and method for efficient large-
scale data processing presented by Google in 2004 to cope
with the challenge of processing very large input data
generated by Internet-based applications. Since its
introduction, MapReduce has is applicable to a wide range of
domains, including scientific simulation, image retrieval and
processing, machine learning and data mining, financial
analysis, log file analysis, blog crawling, language modelling,
machine translation and bioinformatics.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1791
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

One can describe the difference between MPI and
MapReduce as follows. In MapReduce multiple map
processes are formed -- typically by a domain(data)
decomposition familiar from MPI -- these run asynchronously
typically writing results to a file system that is consumed by a
set of reduce tasks that merge parallel results in some fashion.
This programming model implies straightforward and
efficient fault tolerance by re-running failed map or reduce
tasks. MPI addresses more complicated problem architecture
with iterative compute--communicate stages with
synchronization at communication phase. This
synchronization means that all the processes wait if one is
failed or delayed. This inefficiency is not present in
MapReduce where resources are released when individual
map or reduce tasks complete. MPI supports general (built in
and user defined) reductions therefore MPI can be used for
applications of the MapReduce style. However MapReduce
offers greater fault tolerance and user friendly higher level
environment largely stemming from the coarse grain
functional programming model implemented as side-effect
free tasks. MPI supports multiple Map-Reduce stages but
MapReduce just one. Correspondingly MapReduce supports
applications that have the loose coupling while classic HPC
[20] supports more tightly coupled applications

 MapReduce is one of the most important programming
models for Cloud computing environments, supported by
leading Cloud providers such as Amazon, with its Elastic
MapReduce service, and Google itself, which recently
released a Mapper API for its App Engine.
The MapReduce abstraction is inspired by the map and reduce
primitives present in Lisp and other functional languages. A
user defines a MapReduce application in terms of a map
function that processes a (key, value) pair to generate a list of
intermediate (key, value) pairs, and a reduce function that
merges all intermediate values associated with the same
intermediate key.
Map: : (key1; value1) ! arraylist (key2; value2)

reduce: : (key2; list(value2)) ! list (value3)

Current MapReduce implementations,
like Hadoop and Google’s MapReduce , are based on a
master-slave architecture. User node submits a job to a master
node that selects idle workers and assigns a map or reduce
task to each one.
The master node returns the result to the user node when all
the tasks have been completed. The failure of a worker is
substituted by another worker and re-executing its task, while
master failures are not explicitly managed as they are
considered that failures are unlikely in reliable computing
environments.

Fig. 1. Computation of MapReduce

The entire architecture (Figure 1) is grouped to form 2
independent modules.
Phase 1 (Map and Sort): Each key-value pair is fed to the map
function and results are sent to a global buffer. The buffer
comprises of a definite number of buckets, each one for a
different position. A threshold is chosen and , the buffer data
is flushed on to the secondary storage once the output
exceeds the threshold. Each bucket is sorted in the memory
before the buffered results are written into the disk,. Quick
Sort is generally used. The data written on to the disk is
sorted by key.
Phase 2 (Merge and Reduce) : Merge operation starts as and
when it gets inputs. The results are grouped on the basis of
key and the values are clubbed together on a list. In case of
collision in buckets, the new value is append towards the
end of the value list for that key. Heap Sort is commonly
used. The Reduce stage iterates over all keys and applies the
user defined reduce function on them. The results obtained
are written back to the disk.

Fig. 2. DataFlow in MapReduce
MapReduce uses a Scheduling mechanism to optimize node
utilization. Nodes are constantly monitored by the Scheduler
to make sure that no tasks are stalled or show erroneous
behavior. Nodes tend to be slow when jobs are heterogeneous
or dominating users interfere with each other. Free Resources
in clouds are shared by the resource owner as well as by other
users who have idle resources.
A static scheduling mechanism in this situation might lead to
soft failure, where a MapReduce execution has to abort
computation due to domination by its owner. Static
Scheduling, hence, is not preferred in Enterprise Clouds.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1792
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Realtime scheduling is highly efficient as it constantly picks
out nodes that are idle and assigns new tasks to them. The
Scheduler thus starts off by dispatching the map tasks to
all nodes simultaneously. Whenever a reduce task is ready, it
will be scheduled on the basis of the current status of
resources.
MapReduce, being a parallel computing model, is both time
consuming and error prone. It is not possible to incorporate a
parallel computation model for all
applications.Communication, Coordination and
synchronization between the nodes are prime requirements.
Most of the parallel programs are asynchronous and it is
pretty hard to analyze the interaction between the machines.
We now look at two programming models which were
actually proposed for Grid-based applications, but can adapt
seamlessly to Cloud Infrastructures

The current scientific computing is vastly populated by the
growing set of data-intensive computations that require
enormous amounts of computational as well as storage
resources and novel distributed computing frameworks. The
pay-as-you-go Cloud computing model provides an option
for the computational and storage needs of such
computations.

The new generation of distributed computing frameworks
such as MapReduce focuses on catering to the needs of such
data-intensive computations.Iterative computations are at the
core of the vast majority of scientific computations. Many
important data intensive iterative scientific computations can
be implemented as iterative computation and communication
steps, in which computations inside an iteration are
independent and are synchronized at the end of each iteration
through reduce and communication steps, enabling it for
individual iterations to be parallelized using technologies
such as MapReduce. The growth in number of data intensive
iterative computations as well as importance is driven partly
by the need to process massive amounts of data and partly by
the emergence of data intensive computational fields, such as
scientific applications, web mining bioinformatics, chemical
informatics.
A lot of progress has been made with the MapReduce
framework originally developed for information retrieval -- a
really enormous data intensive application. Initial research
shows this is a really promising approach to much scientific
data analysis.

MapReduce programming models offer better fault tolerance
and dynamic flexibility than MPI and so should be used in
loose coupling problems in preference to MPI. Parallel BLAST
is a good example of a case where Generalizing from this,
clouds are more important for data intensive applications

than classic simulations as latter are very sensitive to
synchronization costs which are higher in clouds than
traditional clusters.

MapReduce and Clouds can be used for some of the
applications that are most rapidly growing in importance.
Their support seems essential if one is to support large scale
data intensive applications. More generally a more careful
analysis of clouds versus traditional environments is needed
to quantify the simplistic analysis given above.
There is a clear algorithm challenge to design more loosely
coupled algorithms that are compatible with the map
followed by reduce model of MapReduce or more generally
with the structure of clouds. This could lead to
generalizations of MapReduce which are still compatible with
the cloud virtualization and fault tolerance features.

IV. A CASE STUDY: THE GREPTHEWEB
APPLICATION

An application called GrepTheWeb at Amazon illustrates the
power and the appeal of cloud computing. The application
allows a user to define a regular expression and search the
web for records that match it.

 GrepTheWeb is analogous to the grep Unix command used to
search a file for a given regular expression. This application
performs a search of a very large set of records attempting to
identify records that satisfy a regular expression. The source
of this search is a collection of document URLs produced by
the Alexa Web Search, a software system that crawls the web
every night. The inputs to the applications are a regular
expression and the large data set produced by the web
crawling software; the output is the set of records that satisfy
the expression. The user is able to interact with the
application and get the current status. The application uses
message passing to trigger the activities of multiple controller
threads which launch the application, initiate processing,
shutdown the system, and create billing records.

Performing a regular expression against millions of
documents is not trivial. Large time of processing could be
because of different factors like

• complex Regular expressions

• Dataset could be large, even hundreds of terabytes
• Unknown request patterns

GrepTheWeb uses Hadoop MapReduce, an open source software
package that splits a large data set into chunks, distributes
them across multiple systems, launches the processing, and,
when the processing is complete, aggregates the outputs from

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1793
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

different systems into a final result. Apache Hadoop is a
software library for distributed processing of large data sets
across clusters of computers using a simple programming
model.

Fig. 3: workflow of GrepTheWeb
The details of the workflow of GrepTheWeb are captured in
Figure 3 and consist of the following steps :
1. The start-up phase: create several queues - launch, monitor,
billing, and shutdown queues; start the corresponding
controller threads. Each thread polls periodically its input
queue and when a message is available, retrieves the
message, parses it, and takes the required actions.
2. The processing phase: it is triggered by a StartGrep user
request; then a launch message is enqueued in the launch
queue. The launch controller thread picks up the message and
executes the launch task; then, it updates the status and time
stamps in the Amazon Simple DB domain. Lastly, it enqueues
a message in the monitor queue and deletes the message from
the launch queue. The processing phase consists of the
following steps:
(a) Firstly the launch task starts Amazon EC2 instances: it
uses a Java Runtime Environment pre-installed Amazon
Machine Image (AMI), deploys required Hadoop libraries and
starts a Hadoop Job (run Map/Reduce tasks).
(b) Hadoop runs map tasks on Amazon EC2 slave nodes in
parallel: a map task takes files from Amazon S3, runs a
regular expression and writes locally the match results along
with a description of up to five matches; then the
combine/reduce task consolidates the output by combining
and sorting the results
(c) Final results are stored on Amazon S3 in the output
bucket.
3. The monitoring phase: the monitor controller thread retrieves
the message left at the beginning of the processing phase,
validates the status/error in Amazon Simple .The application
uses the Hadoop MapReduce software and four Amazon
services: EC2, Simple DB, S3, and SQS.
(a) The simplified workflow showing the two inputs, the
regular expression and the input records generated by the
web crawler; a third type of input are the user commands to
report the current status and to terminate the processing.
(b) The detailed workflow; the system is based on message
passing between several queues; four controller threads
periodically poll their associated input queues, retrieve
messages, and carry out the required actions. DB and
executes the monitor task; it updates the status in the Amazon
Simple DB domain, enqueues messages in the shutdown and
the billing queues. The monitor task checks for the Hadoop

status periodically, updates the Simple DB items with
status/error and the Amazon S3 output file. Finally, it deletes
the message from the monitor queue when the processing is
completed.

4. The shutdown phase: the shutdown controller thread
retrieves the message from the shutdown queue and executes
the shutdown task which updates the status and time stamps
in the Amazon Simple DB domain; finally, it deletes the
message from the shutdown queue after processing. The
shutdown phase consists of the following steps:
(a) The shutdown task kills the Hadoop processes, terminates
the EC2 instances after getting EC2 topology information
from Amazon Simple DB and disposes of the infrastructure.
(b) The billing task gets the EC2 topology information, Simple
DB usage, S3 file
and query input, calculates the charges, and passes the
information to the billing service.
5. The cleanup phase: archives the Simple DB data with user
info.
6. User interactions with the system: get the status and output
results. The GetStatus is applied to the service endpoint to get
the status of the overall system (all controllers and Hadoop)
and download the filtered results from Amazon S3 after
completion. To optimize the end-to-end transfer rates in the
S3 storage system multiple files were bundled up and stored
as S3 objects; another performance optimization was to run a
script and sort the keys, the URL pointers, and upload them
in sorted order in S3. Also, multiple
fetch threads were started in order to fetch the objects.
This application illustrates the means to create an on-demand
infrastructure and run it on a massively distributed system in
a manner that allows it to run in parallel and scale up and
down based on the number of users and the problem size.

Fig. 4 : GrepTheWeb Architecture - Zoom Level 1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1794
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig. 5: GrepTheWeb Architecture - Zoom Level 2
GrepTheWeb architecture looks like as shown in Figure 5
(above). It uses the following AWS components:
Amazon S3 for retrieving input datasets and for storing the
output dataset
Amazon SQS for durably buffering requests acting as a "glue"
between controllers
Amazon SimpleDB for storing intermediate status, log, and
for user data about tasks
Amazon EC2 for running a large distributed processing
Hadoop cluster on-demand
Hadoop for distributed processing, automatic parallelization,
and job scheduling

V. HADOOP MAP REDUCE

Hadoop is an open source distributed processing framework
that allows computation of large datasets by splitting the
dataset into manageable chunks, spreading it across a fleet of
machines and managing the overall process by launching
jobs, processing the job no matter where the data is physically
located and, at the end, aggregating the job output into a final
result.
It typically works in three phases. A map phase transforms
the input into an intermediate representation of key value
pairs, a combine phase (handled by Hadoop itself) combines
and sorts by the keys and a reduce phase recombines the
intermediate representation into the final output. Developers
implement two interfaces, Mapper and Reducer, while
Hadoop takes care of all the distributed processing
(automatic parallelization, job scheduling, job monitoring,
and result aggregation).
In Hadoop, there's a master process running on one node to
oversee a pool of slave processes (also called workers)
running on separate nodes. Hadoop splits the input into
chunks. These chunks are assigned to slaves, each slave
performs the map task (logic specified by user) on each pair
found in the chunk and writes the results locally and informs
the master of the completed status. Hadoop combines all the

results and sorts the results by the keys. The master then
assigns keys to the reducers. The reducer pulls the results
using an iterator, runs the reduce task (logic specified by
user), and sends the "final" output back to distributed file
system.

Map Reduce Operation (in GrepTheWeb)
MAPPER: For each input record, extract a set
of key/value pairs that we care about the each
record
 (LineNumber, s3pointer)->
(s3pointer, [matches])
REDUCER: For each extracted key/value pair,
combine it with other values that share the
same key
Identity Function

Fig 6: GrepTheWeb Hadoop Implementation
Hadoop suits well the GrepTheWeb application. As each grep
task can be run in parallel independently of other grep tasks
using the parallel approach embodied in Hadoop is a perfect
fit.
For GrepTheWeb, the actual documents (the web) are
crawled ahead of time and stored on Amazon S3. Each user
starts a grep job by calling the StartGrep function at the
service endpoint. When triggered, masters and slave nodes
(Hadoop cluster) are started on Amazon EC2 instances.
Hadoop splits the input (document with pointers to Amazon
S3 objects) into multiple manageable chunks of 100 lines each
and assign the chunk to a slave node to run the map task. The
map task reads these lines and is responsible for fetching the
files from Amazon S3, running the regular expression on
them and writing the results locally. If there is no match,
there is no output. The map tasks then passes the results to
the reduce phase which is an identity function (pass through)
to aggregate all the outputs. The "final" output is written back
to Amazon S3.

Mapper Implementation-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1795
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Key = line number and value = line in the input dataset
i)Create a signed URL (using Amazon AWS credentials)
using the contents of key-value
ii) Read (fetch) Amazon S3 Object (file) into a buffer
iii) Run regular expression on that buffer
iv)If there is match, collect the output in new set of key-value
pairs (key = line, value = up to 5 matches)

Reducer Implementation - Pass-through (Built-in Identity
Function) and write the results back to S3.

VI. CONCLUSION

Cloud technologies work well for most pleasingly-parallel
problems. Their support for handling large data sets, the
concept of moving computation to data, and the better quality
of services provided such as fault tolerance and monitoring,
simplify the implementation details of such problems over
the traditional system. Most cloud technologies support the
concept of moving computation to data where the parallel
tasks access data stored in local disks.. Instead of building
your applications on fixed and rigid infrastructures, Cloud
Architectures provide a new way to build applications on on-
demand infrastructures. GrepTheWeb demonstrates how
such applications can be built.

VII. REFERENCES
[1] P. S. Pacheco, Parallel programming with MPI. San Francisco,
CA,USA: Morgan Kaufmann Publishers Inc., 1996.
[2] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified
ontology of cloud computing,” in Grid Computing Environments
Workshop, 2008. GCE ’08, 2008, pp. 1 –10.
[3] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environments
Workshop, 2008. GCE ’08, 2008, pp. 1 –10.
[4] L. Yu and et al., “Harnessing parallelism in multicore clusters with
the all-pairs, wavefront, and makeflow abstractions,” Journal of Cluster
Computing, vol. 13, no. 3, pp. 243–256, 2010.
[5]“The directed acyclic graph manager,”
http://www.cs.wisc.edu/condor/dagman, 2002.
[6] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in Operating Systems Design and Implementation,
2004.
[7] Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics
method for protein folding,” Chemical Physics Letters, vol. 314, no 1-2,
pp. 141 – 151, 1999.
[8] P. Brenner, C. R. Sweet, D. VonHandorf, and J. A. Izaguirre,
“Accelerating the replica exchange method through an efficient all-pairs
exchange,” Journal of Chemical Physics, vol. 126, p. 074103, February
2007.
[9] K. Al-Tawil and C. A. Moritz, “Performance modeling and
evaluation of mpi,” Journal of Parallel and Distributed Computing, vol.
61, no. 2, pp. 202 – 223, 2001.
[10] M. Resch, H. Berger, and T. B¨onisch, “A comparison of mpi
performance on different mpps,” in Proceedings of the 4th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface. Springer-Verlag,
1997, pp. 25–32.

[11] T. Matthey and et al., “Protomol, an object-oriented framework for
prototyping novel algorithms for molecular dynamics,” ACM
Transactions on Mathematical Software, vol. 30, pp. 237–265,
September 2004.
[12] J. Phillips, G. Zheng, S. Kumar, and L. Kale, “Namd:
Biomolecular simulation on thousands of processors,” in
Supercomputing, ACM/IEEE 2002 Conference, November 2002.
[13] E. Lindahl, B. Hess, and D. van der Spoel, “Gromacs 3.0: a
package for molecular simulation and trajectory analysis,” Journal of
Molecular Modeling, vol. 7, pp. 306–317, 2001.
[14] W. Gentzsch, “Sun grid engine: Towards creating a compute
power grid,” in Proceedings of the 1st International Symposium on
Cluster Computing and the Grid, ser. CCGRID ’01, 2001.
[15] J. Dean and S. Ghemawat, "MapReduce: Simplified Data
Processing on Large Clusters," Communications of the ACM - 50th
anniversary issue: 1958-2008, vol. 51, no. 1, 2008.
[16] XIAO Yonghao, HUANG Qingnan (2011). Parallel Computation
of Impact Problems Based on Block Data Structure (in Chinese).
Computer Aided Engineering, 1, 33-36.
[17] Calvin Lin & Lawrence Snyder (2009). Parallel Program
Design Principles. Beijing: Mechanical Industry Press.
[18] ZHU Yongzhi, LI Bingfeng, SUN Tingting & LI Pei (2011).
Research on Scalability of Parallel Computing System (in
Chinese). Computer Engineering and Applications.
[19] Amazon.com, “Elastic compute cloud (ec2),”
http://www.aws.amazon.com/ec2.
[20] Jaliya Ekanayake, Xiaohong Qiu, Thilina Gunarathne, Scott
Beason, Geoffrey Fox High Performance Parallel Computing with
Clouds and Cloud Technologies to appear as a book chapter to Cloud
Computing and Software Services: Theory and Techniques, CRC Press
(Taylor and Francis), ISBN-10: 1439803153.
http://grids.ucs.indiana.edu/ptliupages/publications/cloud_handbook_fin
al-with-diagrams.pdf
[21] Open source MapReduce Apche Hadoop,
http://hadoop.apache.org/core/ IJSER

http://www.ijser.org/
http://grids.ucs.indiana.edu/ptliupages/publications/cloud_handbook_final-with-diagrams.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/cloud_handbook_final-with-diagrams.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/cloud_handbook_final-with-diagrams.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/cloud_handbook_final-with-diagrams.pdf

